skip to content

Materials Theory Group

 
Two Dimensional Ice from First Principles: Structures and Phase Transitions

Scientists at UCL and Cambridge predict new two-dimensional ice structures on the basis of state-of-the-art computer simulations.

A systematic computer simulation study has led to predictions about how water molecules freeze into a single layer of ice. These simulations, published in Physical Review Letters, reveal several models for 2D ice, including a hexagonal, a Cairo tiling pentagonal, a square and a rhombic structure. The new 2D ice structures, obtained on the basis of first principles simulations and unbiased structure search methods, extend the knowledge of ice in nature and are potentially important in understanding phenomena such as cloud microphysics and tribology.

The authors also predict a sequence of phase transitions that happens as a function of pressure and confinement, leading to the determination of a phase diagram of 2D ice. Overall this work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures formed to the confining pressure and confinement width. The observation of the flat square structure supports recent experimental observations of square ice confined within graphene sheets. The authors also discuss how other structures such as the Cairo tiling pentagonal structure may be observed by slightly altering the conditions used so far in experiments.

J. Chen, G. Schusteritsch, C.J. Pickard, C.G. Salzmann, and A. Michaelides, "Two Dimensional Ice from First Principles: Structures and Phase Transitions", Phys. Rev. Lett. 116, 025501 – Published 13 January 2016 - DOI: 10.1103/PhysRevLett.116.025501 

 

Latest news

Successful Gordon Research Conference on Materials at High Pressure

27 September 2024

The Materials Theory Group was well represented at the Gordon Research at High Pressure Conference in Holderness, New Hampshire, from 14-19 July. This year, the conference was chaired by our group leader, Prof. Chris Pickard...

Predicting a potentially synthesisable ambient-pressure high-Tc superconducting hydride

10 May 2024

Superconductors are a class of materials which show zero resistance and the expulsion of magnetic fields below a critical temperature, T c . These materials have a wide range of applications, including fusion reactors where...

Fast and easy exploration of crystal properties using machine-learned Ephemeral Data-derived Potentials

12 January 2024

Machine learning is quickly gaining prominence in the field of computational materials science. In the Materials Theory Group, we develop so-called ‘machine learned interatomic potentials’ (MLIPs), which can describe the...

Structure and colour in nitrogen-doped lutetium hydride

19 December 2023

Superconducting materials have a wide range of applications - from efficient power transmission to the advanced electromagnetics used in MRI machines - due to their loss-free conductivity. Current practical superconductors...

Quantum-induced hydrogen hopping in high-temperature superconducting lanthanum polyhydride

14 April 2023

Figure caption : Quantum effects are essential for hydrogen to dynamically explore different configurations. On the left, we see how the hydrogen atoms cover much larger distances at all temperatures when quantum effects are...

Flat water and ice

26 September 2022

Figure Caption : Pentagonal ice – a two-dimensional form of ice predicted to form when water is squeezed between graphene sheets. Water can be found trapped in nanoscale cavities, for example in biological membranes, or in...

Congratulations Ben Shires!

2 August 2022

Ben completed his PhD viva last week, covering his work on SHEAP , and he will soon be Dr Shires. Congratulations! shires.jpg