skip to content

Materials Modelling Seminar

Professor Michele Ceriotti, Laboratory of Computational Science and Modelling, EPFL

Wednesday 24th April 2019, 12:00

Goldsmiths 1 (0_017), Department of Materials Science & Metallurgy

Title: Atomistic Machine Learning between Physics and Data


Statistical regression techniques have become very fashionable as a tool to predict the properties of systems at the atomic scale, sidestepping much of the computational cost of first-principles simulations and making it possible to perform simulations that require thorough statistical sampling without compromising on the accuracy of the electronic structure model.

In this talk I will argue how data-driven modelling can be rooted in a mathematically rigorous and physically-motivated framework, and how this is beneficial to the accuracy and the transferability of the model. I will also highlight how machine learning - despite amounting essentially to data interpolation - can provide important physical insights on the behaviour of complex systems, on the synthesizability and on the structure-property relations of materials.

I will give examples concerning all sorts of atomistic systems, from semiconductors to molecular crystals, and properties as diverse as drug-protein interactions, dielectric response of aqueous systems and NMR chemical shielding in the solid state.

Latest news

Fast and easy exploration of crystal properties using machine-learned Ephemeral Data-derived Potentials

12 January 2024

Machine learning is quickly gaining prominence in the field of computational materials science. In the Materials Theory Group, we develop so-called ‘machine learned interatomic potentials’ (MLIPs), which can describe the...

Structure and colour in nitrogen-doped lutetium hydride

19 December 2023

Superconducting materials have a wide range of applications - from efficient power transmission to the advanced electromagnetics used in MRI machines - due to their loss-free conductivity. Current practical superconductors...

Quantum-induced hydrogen hopping in high-temperature superconducting lanthanum polyhydride

14 April 2023

Figure caption : Quantum effects are essential for hydrogen to dynamically explore different configurations. On the left, we see how the hydrogen atoms cover much larger distances at all temperatures when quantum effects are...

Flat water and ice

26 September 2022

Figure Caption : Pentagonal ice – a two-dimensional form of ice predicted to form when water is squeezed between graphene sheets. Water can be found trapped in nanoscale cavities, for example in biological membranes, or in...

Congratulations Ben Shires!

2 August 2022

Ben completed his PhD viva last week, covering his work on SHEAP , and he will soon be Dr Shires. Congratulations! shires.jpg

Quicker Crystals

14 July 2022

First-principles structure prediction has enabled the computational discovery of materials with extreme, or exotic properties. For example, the dense hydrides, which following computational searches have been found to...

New carbonates uncovered

7 January 2022

A study by Joseph Nelson and Chris Pickard of the Department of Materials Science and Metallurgy, University of Cambridge and the AIMR, Tohoku University, uses structure prediction to exhaustively explore the Ti-C-O and Al-C-O ternary systems.