skip to content

Materials Theory Group

Aluminium at terapascal pressures

Under normal conditions matter is mostly empty space. Atoms are built from a dense nucleus of protons and neutrons, with the void between filled by a comparably tenuous cloud of electrons shuttling about, following quantum mechanical rules. High pressure physicists squeeze hard on this empty space (using mechanical presses, diamond anvils, or shock waves from sudden impacts or laser light), forcing the electrons to occupy smaller volumes.

The incredibly small distances between particles in the collisions generated by the Large Hadron Collider (LHC) to simulate the compressed universe shortly after the big bang can be thought of as the extreme limit of high pressure physics. But there is a vast gap in our knowledge of the behaviour of dense matter laying between high energy particle physics and the rather modest pressures generated routinely in the laboratory. A new generation of laser shock experiments, to be performed using machines such as the National Ignition Facility (NIF) in the United States, is set to change this - and while no one knows what they will find, it had been generally assumed that the atoms would be rather boringly well (or close) packed.

In 2006 Chris Pickard and Richard Needs (Cambridge) introduced a simple and effective method for the prediction of material structure at high pressure. Their method, dubbed "ab initio random structure searching" (AIRSS) combines quantum mechanics with trying many random configurations for the starting positions of the atoms. Confidence has grown in the method, following impressive "blind" (not depending on any experimental observations) predictions of unexpected materials, which have subsequently been found to exist in diamond anvil cell experiments.

Encouraged, Pickard and Needs have started to explore the behaviour of matter at extremely high pressures - those to be explored by the laser shock experiments at the NIF, and encountered in the centres of the recently discovered large exoplanets, and gas giants of our own solar system. They have found (published in Nature Materials) that far from being boring, even such a standard and elemental material such as aluminium adopts intriguing complex structures (pictured) at pressures ten times those found in the centre of the earth. They track down the origin of these mysterious atomic arrangements to the squeezing of electrons from the atoms to the gaps between them, forming what is known as an 'electride' - or an ionic structure in which the anions are electrons alone.

The full article features in Nature Materials, accompanied by a News and Views by Malcolm McMahon and Graeme Ackland, and in this month's PsiK newsletter.

Latest news

The elements of life under pressure

1 July 2021

First-principles structure prediction sheds light on high-pressure compounds formed from carbon, hydrogen, nitrogen and oxygen.

AIRSS for battery cathode materials

15 June 2021

A team of researchers at Cambridge and University College London have developed a computational framework for battery cathode exploration based on ab initio random structure searching.

Anatase-like Grain Boundary Structure in Rutile Titanium Dioxide

30 April 2021

A collaboration between researchers at Cambridge and AIMR has shed light on grain boundary structures in titania.

Physics World Breakthrough of the Year finalists for 2020

17 December 2020

A paper coauthored by Chris Pickard and Bartomeu Monserrat has been selected as a Top 10 finalist in Physics World's breakthroughs of the year for 2020.

An upper limit for the speed of sound

17 November 2020

A collaboration involving Bartomeu Monserrat and Chris Pickard was featured on both the University website and the Department website .

New fellowships for Chuck

17 November 2020

Congratulations to Chuck Witt, who began recently as a Schmidt Science Fellow and as a Junior Research Fellow at Christ's College, Cambridge! The Schmidt award is intended to catalyze new research directions and...

Machine learning shows how hydrogen becomes a metal inside giant planets

10 September 2020

By combining machine learning and quantum mechanics, researchers have carried out simulations to discover how hydrogen becomes a metal under extreme pressures.