skip to content

Materials Theory Group

Single-Layered Hittorf’s Phosphorus: A Wide-Bandgap High Mobility 2D Material

The field of two-dimensional materials has seen enormous growth since the discovery of graphene, largely driven by the promise of exotic electronic properties that can be exploited in novel applications. Unfortunately many of the two-dimensional materials studied thus far exhibit either large band gaps or high mobilities but not both.

Scientists at Cambridge and EPFL have studied the properties of a single layer of violet, or Hittorf’s, phosphorus using first-principles density functional theory (DFT).

The single-layered form of Hittorf’s phosphorus is found to exhibit quite exceptional electronic properties. This two-dimensional material is predicted to have a large, direct band gap of around 2.5 eV and to have a very high hole mobility with an upper bound lying between 3000-7000 cm2 V-1 s-1. Being a direct semiconductor makes it very attractive for optical applications. In addition, the binding energy per layer is found to be very small (similar to graphite), suggesting that exfoliation may be experimentally possible.

The rare combination of properties in single-layered Hittorf’s phosphorus render it an exceptional candidate for use in future applications spanning a wide variety of technologies, in particular for high-frequency electronics and optoelectronic devices operating in the low-wavelength blue colour range.

Georg Schusteritsch, Martin Uhrin and Chris J. Pickard, "Single-Layered Hittorf’s Phosphorus: A Wide-Bandgap High Mobility 2D Material", Nano Lett. 16 (5), (2016) pp 2975–2980 DOI: 10.1021/acs.nanolett.5b05068

Latest news

New carbonates uncovered

7 January 2022

A study by Joseph Nelson and Chris Pickard of the Department of Materials Science and Metallurgy, University of Cambridge and the AIMR, Tohoku University, uses structure prediction to exhaustively explore the Ti-C-O and Al-C-O ternary systems.

Postdoc in High Temperature Conventional Superconductivity

5 January 2022

Applications are invited for a postdoctoral research position with Professor Chris Pickard at the University of Cambridge. Recent advances in computational methods have raised the prospect of the in silico design of high...

Visualising potential energy surfaces using dimensionality reduction

25 November 2021

Computational structure prediction has emerged as a highly successful approach to the discovery of new materials. Candidate structures are created by constructing the most stable configurations that can be adopted by a given...

The elements of life under pressure

1 July 2021

First-principles structure prediction sheds light on high-pressure compounds formed from carbon, hydrogen, nitrogen and oxygen.

AIRSS for battery cathode materials

15 June 2021

A team of researchers at Cambridge and University College London have developed a computational framework for battery cathode exploration based on ab initio random structure searching.

Anatase-like Grain Boundary Structure in Rutile Titanium Dioxide

30 April 2021

A collaboration between researchers at Cambridge and AIMR has shed light on grain boundary structures in titania.

Physics World Breakthrough of the Year finalists for 2020

17 December 2020

A paper coauthored by Chris Pickard and Bartomeu Monserrat has been selected as a Top 10 finalist in Physics World's breakthroughs of the year for 2020.