skip to content

Materials Theory Group

 
Single-Layered Hittorf’s Phosphorus: A Wide-Bandgap High Mobility 2D Material

The field of two-dimensional materials has seen enormous growth since the discovery of graphene, largely driven by the promise of exotic electronic properties that can be exploited in novel applications. Unfortunately many of the two-dimensional materials studied thus far exhibit either large band gaps or high mobilities but not both.

Scientists at Cambridge and EPFL have studied the properties of a single layer of violet, or Hittorf’s, phosphorus using first-principles density functional theory (DFT).

The single-layered form of Hittorf’s phosphorus is found to exhibit quite exceptional electronic properties. This two-dimensional material is predicted to have a large, direct band gap of around 2.5 eV and to have a very high hole mobility with an upper bound lying between 3000-7000 cm2 V-1 s-1. Being a direct semiconductor makes it very attractive for optical applications. In addition, the binding energy per layer is found to be very small (similar to graphite), suggesting that exfoliation may be experimentally possible.

The rare combination of properties in single-layered Hittorf’s phosphorus render it an exceptional candidate for use in future applications spanning a wide variety of technologies, in particular for high-frequency electronics and optoelectronic devices operating in the low-wavelength blue colour range.

Georg Schusteritsch, Martin Uhrin and Chris J. Pickard, "Single-Layered Hittorf’s Phosphorus: A Wide-Bandgap High Mobility 2D Material", Nano Lett. 16 (5), (2016) pp 2975–2980 DOI: 10.1021/acs.nanolett.5b05068

Latest news

Quantum-induced hydrogen hopping in high-temperature superconducting lanthanum polyhydride

14 April 2023

Figure caption : Quantum effects are essential for hydrogen to dynamically explore different configurations. On the left, we see how the hydrogen atoms cover much larger distances at all temperatures when quantum effects are...

Flat water and ice

26 September 2022

Figure Caption : Pentagonal ice – a two-dimensional form of ice predicted to form when water is squeezed between graphene sheets. Water can be found trapped in nanoscale cavities, for example in biological membranes, or in...

Congratulations Ben Shires!

2 August 2022

Ben completed his PhD viva last week, covering his work on SHEAP , and he will soon be Dr Shires. Congratulations! shires.jpg

Quicker Crystals

14 July 2022

First-principles structure prediction has enabled the computational discovery of materials with extreme, or exotic properties. For example, the dense hydrides, which following computational searches have been found to...

New carbonates uncovered

7 January 2022

A study by Joseph Nelson and Chris Pickard of the Department of Materials Science and Metallurgy, University of Cambridge and the AIMR, Tohoku University, uses structure prediction to exhaustively explore the Ti-C-O and Al-C-O ternary systems.

Postdoc in High Temperature Conventional Superconductivity

5 January 2022

Applications are invited for a postdoctoral research position with Professor Chris Pickard at the University of Cambridge. Recent advances in computational methods have raised the prospect of the in silico design of high...

Visualising potential energy surfaces using dimensionality reduction

25 November 2021

Computational structure prediction has emerged as a highly successful approach to the discovery of new materials. Candidate structures are created by constructing the most stable configurations that can be adopted by a given...