skip to content

Materials Theory Group

 
Helium–water compounds exhibit multiple superionic states

Superionic materials are simultaneously liquids and solids. In a multicomponent compound, the different constituents could melt independently, at different temperatures. In a collaboration between the University of Cambridge and Nanjing University, a computational study has discovered that helium-water compounds under pressure are expected to exhibit multiple superionic states, with the hydrogen and helium melting independently while the oxygen atoms remain in fixed, regular positions.

First principles structure prediction techniques were used to find that water and unreactive helium can form stable compounds at surprisingly low pressures. Molecular dynamics simulations were then performed on these new structures, at increasing temperatures. It was found that the helium atoms started to wander freely through the water ice framework, exhibiting diffusive behaviour: the hallmark of superionicity. At even higher temperatures, the hydrogen sub-lattice also melted, giving rise to a multiply superionic phase.

The work is to appear in a forthcoming issue of Nature Physics.

Additional news coverage about the study can be found on phys.org: Study unveils new superionic states of helium-water compounds

 

Multiple superionic states in helium–water compounds

Cong Liu, Hao Gao, Yong Wang, Richard J. Needs, Chris J. Pickard, Jian Sun, Hui-Tian Wang and Dingyu Xing

Nature Physics (July 2019)

DOI: 10.1038/s41567-019-0568-7

Latest news

Fast and easy exploration of crystal properties using machine-learned Ephemeral Data-derived Potentials

12 January 2024

Machine learning is quickly gaining prominence in the field of computational materials science. In the Materials Theory Group, we develop so-called ‘machine learned interatomic potentials’ (MLIPs), which can describe the...

Structure and colour in nitrogen-doped lutetium hydride

19 December 2023

Superconducting materials have a wide range of applications - from efficient power transmission to the advanced electromagnetics used in MRI machines - due to their loss-free conductivity. Current practical superconductors...

Quantum-induced hydrogen hopping in high-temperature superconducting lanthanum polyhydride

14 April 2023

Figure caption : Quantum effects are essential for hydrogen to dynamically explore different configurations. On the left, we see how the hydrogen atoms cover much larger distances at all temperatures when quantum effects are...

Flat water and ice

26 September 2022

Figure Caption : Pentagonal ice – a two-dimensional form of ice predicted to form when water is squeezed between graphene sheets. Water can be found trapped in nanoscale cavities, for example in biological membranes, or in...

Congratulations Ben Shires!

2 August 2022

Ben completed his PhD viva last week, covering his work on SHEAP , and he will soon be Dr Shires. Congratulations! shires.jpg

Quicker Crystals

14 July 2022

First-principles structure prediction has enabled the computational discovery of materials with extreme, or exotic properties. For example, the dense hydrides, which following computational searches have been found to...

New carbonates uncovered

7 January 2022

A study by Joseph Nelson and Chris Pickard of the Department of Materials Science and Metallurgy, University of Cambridge and the AIMR, Tohoku University, uses structure prediction to exhaustively explore the Ti-C-O and Al-C-O ternary systems.