skip to content

Materials Theory Group

 

Latest news

Predicting a potentially synthesisable ambient-pressure high-Tc superconducting hydride

10 May 2024

Superconductors are a class of materials which show zero resistance and the expulsion of magnetic fields below a critical temperature, T c . These materials have a wide range of applications, including fusion reactors where...

Fast and easy exploration of crystal properties using machine-learned Ephemeral Data-derived Potentials

12 January 2024

Machine learning is quickly gaining prominence in the field of computational materials science. In the Materials Theory Group, we develop so-called ‘machine learned interatomic potentials’ (MLIPs), which can describe the...

Structure and colour in nitrogen-doped lutetium hydride

19 December 2023

Superconducting materials have a wide range of applications - from efficient power transmission to the advanced electromagnetics used in MRI machines - due to their loss-free conductivity. Current practical superconductors...

Quantum-induced hydrogen hopping in high-temperature superconducting lanthanum polyhydride

14 April 2023

Figure caption : Quantum effects are essential for hydrogen to dynamically explore different configurations. On the left, we see how the hydrogen atoms cover much larger distances at all temperatures when quantum effects are...

Flat water and ice

26 September 2022

Figure Caption : Pentagonal ice – a two-dimensional form of ice predicted to form when water is squeezed between graphene sheets. Water can be found trapped in nanoscale cavities, for example in biological membranes, or in...

Congratulations Ben Shires!

2 August 2022

Ben completed his PhD viva last week, covering his work on SHEAP , and he will soon be Dr Shires. Congratulations! shires.jpg

Quicker Crystals

14 July 2022

First-principles structure prediction has enabled the computational discovery of materials with extreme, or exotic properties. For example, the dense hydrides, which following computational searches have been found to...